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Abstract.

Hydroxyl and hydroperoxy radicals are key species for the understanding of atmospheric oxidation processes. Their mea-

surement is challenging due to their high reactivity, therefore very sensitive detection methods are needed. Within this study,

the measurement of hydroperoxy radicals (HO2) using chemical ionization combined with an high resolution time of flight

mass spectrometer (Aerodyne Research Inc.) employing bromide as primary ion is presented. The 1σ limit of detection of5

4.5× 107 molecules cm−3 for a 60 s measurement is below typical HO2 concentrations found in the atmosphere. The detec-

tion sensitivity of the instrument is affected by the presence of water vapor. Therefore, a water vapor dependent calibration

factor that decreases approximately by a factor of 2 if the water vapor mixing ratio increases from 0.1 to 1.0 % needs to be

applied. An instrumental background most likely generated by the ion source that is equivalent to a HO2 concentration of

1.5± 0.2× 108 molecules cm−3 is subtracted to derive atmospheric HO2 concentrations. This background can be determined10

by overflowing the inlet with zero air. Several experiments were performed in the atmospheric simulation chamber SAPHIR

at the Forschungszentrum Jülich to test the instrument performance by comparison to the well-established laser-induced fluo-

rescence (LIF) technique for measurements of HO2. A high linear correlation coefficient of R2 = 0.87 is achieved. The slope

of the linear regression of 1.07 demonstrates the good absolute agreement of both measurements. Chemical conditions during

experiments allowed testing the instrument’s behavior in the presence of atmospheric concentrations of H2O, NOx and O3. No15

significant interferences from these species were observed. All these facts are demonstrating a reliable measurement of HO2

by the chemical ionization mass spectrometer presented.

Copyright statement.

1 Introduction

Understanding of the oxidation processes in the atmosphere requires sensitive measurements of the radical species involved.20

Hydroxyl radicals (OH) are the most important oxidative species and are highly reactive to most of the inorganic and organic
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pollutants in the atmosphere. Primary sources of OH radicals are mainly ozone photolysis and in polluted environments also

nitrous acid (HONO) photolysis can be of importance. Organic pollutants are oxidized by OH to produce organic peroxy

radical species (RO2) and also hydroperoxy radicals (HO2). OH and HO2 radicals are closely inter-connected by a radical

chain reaction, in which OH is reformed by the reaction of HO2 with nitric oxide (NO):

HO2 + NO→OH +NO2 (R1)5

As the atmospheric lifetime of HO2 radicals is typically up to a factor 10 longer than that of OH radicals, HO2 can be

regarded as an important chemical reservoir for hydroxyl radical (OH). Atmospheric NO concentrations are often sufficiently

high to maintain an efficient OH production by the reaction of HO2 with NO, so that R1 provides a large portion of the total

OH production. Measurements of both species are needed to analyze the OH radicals budget.

The majority of the techniques currently applied to measure atmospheric concentrations of HO2 radicals use chemical10

conversion, which is an indirect measurement. In chemical amplifying systems, a radical reaction cycle between OH and HO2

is established by adding two reactants. The concentration of the product species is therefore amplified compared to the small,

initial HO2 concentration in the sampled air.

PEroxy RadiCal Amplification (PERCA) instruments make use of NO and CO for the conversion of HO2 to OH and OH

to HO2, respectively. One NO2 molecule is produced in each reaction cycle so that the initially small HO2 concentration is15

amplified as NO2, which is then detected by a luminol detector, fluorescence or absorption methods. Because RO2 is also

converted to HO2 in the reaction with NO, these instruments measure the sum of RO2 and HO2. Typically an amplification

of roughly a factor of 100 is achieved to produce a measurable amount of NO2 (Cantrell et al., 1984; Hastie et al., 1991;

Clemitshaw et al., 1997; Burkert et al., 2001; Sadanaga et al., 2004; Mihele and Hastie, 2000; Green et al., 2006; Andrés-

Hernández et al., 2010).20

Alternatively to CO, SO2 can be used in the chemical amplifier system (Reiner et al., 1997; Hanke et al., 2002; Edwards

et al., 2003; Hornbrook et al., 2011). The high sensitivity of CIMS measurement using NO−3 as primary ion allows to detect

H2SO4 produced in the reaction of SO2 with OH. Amplification factors of approximately 10 are sufficient is this case. Like in

the PERCA instrument, RO2 is also converted to HO2 in the reaction with NO in these instruments. However, Hornbrook et al.

(2011) developed a method to distinguish between HO2 and RO2 by operating the instrument at different chemical conditions25

(varying NO, SO2 and O2 concentrations), thereby changing the relative sensitivities for HO2 and RO2.

Laser-induced fluorescence (LIF) is a sensitive technique for OH radical measurements and it is used for the indirect detec-

tion of HO2 by its conversion into OH after reaction with NO. The concurrent conversion of some specific RO2 radicals can

contribute to the HO2 signal (Fuchs et al., 2011; Whalley et al., 2013; Lew et al., 2018). This can be minimized by reducing

the NO concentration added to the sampled air for the conversion of HO2 to OH, but on the cost of a reduced sensitivity. A30

comparison of three LIF instruments in 2010 before the RO2 interference was discovered showed significant differences in

measured HO2 concentration in experiments in the SAPHIR chamber (Fuchs et al., 2010). This could have been partly due to

interferences from RO2, but measurements also differed depending on the water vapor concentration.
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Several drawbacks are connected with existing HO2 detection methods. The PERCA systems exhibit a strong water vapor

dependence of the amplification factor. In addition, chemical conversion of HO2 by the reaction with NO used in all instruments

can lead to the concurrent conversion of RO2.

Previous work by Veres et al. (2015) showed that HO2 radicals can be detected with a CIMS instrument using iodide as

primary ion. Sanchez et al. (2016) demonstrated for the first time that this approach can also be used with Br−. The HO25

radicals are directly measured by a mass spectrometer as an ion cluster formed with bromide ions. In this study, the direct

measurement of atmospheric concentrations of HO2 radicals using Br-CIMS is presented. A detailed characterization of the

instrument has been performed. Further, the inter-comparison with an LIF based HO2 measurement is used to identify potential

interferences.

2 Methods10

2.1 Chemical ionization mass spectrometry technique

The instrument used for the detection of the Br− ·HO2 cluster consists of a custom-built ion flow tube (Fig. 1) that is mounted

upstream of a commercial, high resolution time-of-flight mass spectrometer (TOF-MS, Aerodyne Res.). For the detection of

reactive HO2 radicals, losses in inlets can play a significant role. As radical species are easily lost by contact on walls, the

inlet of the instrument is designed to sample air directly into the ion flow tube without additional inlet lines. The TOF-MS is15

equipped with an atmospheric pressure ionization (APi) transfer stage providing the ion transfer from the ion flow tube to the

detector. The TOF mass analyzer (Tofwerk Ag, Switzerland) has a mass resolution better than 2000.

Ambient air containing HO2 (flow rate 3.4 slm) is sampled through a 0.7 mm skimmer nozzle and is mixed with the bromide

ions in the ion flow tube shown in Fig. 1. The ion flow tube has an inner diameter of 22 mm and a length of 130 mm. The

distance between the ion source and the nozzle downstream is 100 mm. The ion flow tube is kept at a constant pressure of20

120 hPa using a butterfly control valve upstream of a scroll pump. Assuming that 5.4 slm of gas are passing through the

ion flow tube without considering the complex fluid dynamics in the ion flow tube, the mean residence time is 4 ms. Longer

versions of the ion flow tube of up to twice its size were tested, but a reduced sensitivity for HO2 was found. Downstream of

the ion flow tube, the sampled air enters a commercially available transfer stage (CI-API transfer stage, Aerodyne Research

Inc.) through a nozzle with 0.5 mm diameter. The transfer stage consists of two quadrupoles and direct current transfer optics25

that guide the ions to the TOF analyzer.

Bromide ions easily clusters with polar species e.g. acids (Caldwell et al., 1989). This enables their detection in the gas phase

including HO2, which is a relative strong acid (the binding energy is 353 kcal mol−1 Harrison (1992)). In order to produce Br−

ions, a gas flow of 2 slm nitrogen is mixed with 10 sccm of a 0.4 % mixture of CF3Br in nitrogen (Air Liquide Deutschland

GmbH, N2 99.9999 % purity). The resulting gas mixture of approximately 20 ppmv CF3Br in nitrogen is supplied to the30

370 MBq 210Po ion source to generate bromide ions.

The isotopic pattern of bromide (approx. 1 79Br : 1 81Br) provides additional information if a signal detected at a certain

mass contains a cluster with bromide, because similar signals need to be contained at two masses (m/z and m/z+2). Therefore,
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HO2 ·Br− is detected on masses 112 and 114 with similar intensities. Both signals can be used for the data evaluation in order

to improve the signal-to-noise ratio.

α-particle
ion source

to the TOF; flow 200 sccm; p = 1 hPa

CF3Br ⇒
20 ppm
2.0 slm N2
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Figure 1. Schematic drawing of the ion flow tube, where HO2 clusters with Br− are formed. The ion flow-tube is mounted upstream of an

Aerodyne Time-of-Flight mass spectrometer.

The data are analyzed using the following procedure. 30 mass spectra measured with a time resolution of 2 s are summed

up to improve the signal-to-noise ratio (cf. Sect. 3.2). The HO2 ·Br− ion cluster ion count rate (m/z 112) is normalized to

the count rate of the primary ion (m/z 79). The isotopic signal at a mass-to-charge ratio of 114 and 81 are treated in the same5

way. The signal at both isotopic masses of the HO2 ·Br− ion cluster are compared to check for possible interference from

ions not containing a bromide molecule. In the following step, a water vapor dependent sensitivity is applied to convert the

signal to a HO2 concentration. Details about the water vapor dependent sensitivity are presented in Sect. 3.1. Finally a constant

background is subtracted from the data. No difference in the isotopic signals was observed showing that no other molecule

4

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-195
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 21 June 2018
c© Author(s) 2018. CC BY 4.0 License.



(not containing bromide) is interfering. In this study, only data from one of the two isotopes (m/z 112 and 79) are discussed for

simplicity.

2.2 Calibration source

For calibrating the HO2-CIMS instrument’s sensitivity the same radical source is used as for calibration of the LIF instrument

that is in operation at Forschungszentrum Jülich (Fuchs et al., 2011). This is possible because the designs of the inlet nozzle5

and flow rates of both instruments are similar. The LIF is sampling 1.0 slm and the CIMS instrument is sampling 3.4 slm.

Both flows are much smaller than the total flow through the calibration source. The calibration source provides a laminar

gas stream of humidified synthetic air at a flow rate of 20 slm. The gas supply device for the calibration source allows for

systematic variation of the water vapor concentration. During calibrations, the water vapor concentration is altered from 0.1 to

1.6 %, in order to determine the humidity dependence of the instrument’s sensitivity. Water vapor is photolysed at 185 nm at10

atmospheric pressure using a penray lamp leading to the production of equal concentrations of OH and HO2 radicals (Fuchs

et al., 2011). The radical concentration that is provided by the calibration source is calculated from the UV intensity that is

monitored by a photo-tube detector, the flow rate and water vapor concentration. The photo-tube signal is calibrated against

ozone that is concurrently produced from oxygen photolysis by the 185 nm radiation. An absorption cell in-between the UV

lamp and the photolysis region can be filled with a N2O / N2 mixture to vary the UV intensity, as N2O is a strong absorber15

at this wavelength. If excess CO is added to the synthetic air provided to the calibration source, OH is converted to HO2, so

that the HO2 concentration is doubled compared to the operation without CO. Typically, the calibration is performed at HO2

concentrations between 5× 108 and 1× 1010 molecules cm−3.

2.3 HO2 detection by laser-induced fluorescence

The LIF instrument uses two detection channels to detect OH and HO2 simultaneously. The LIF instrument has been described20

in detail by Holland et al. (2003), Fuchs et al. (2011), and Tan et al. (2017).

For the HO2 measurement, a gas stream of ambient air is expanded in to the sample cell at 4 hPa. NO is added to the

sampled air for the conversion of HO2 to OH (Reaction R1). The NO concentration is adjusted to provide a HO2 conversion

efficiency of approximately 10 % in order to minimized concurrent RO2 conversion (Fuchs et al., 2011). The OH radicals

are excited by a laser pulse at 308 nm, provided by a dye laser system. Ozone can be photolysed at 308 nm, which can lead25

to a small interference from ozone that is subtracted from the measured signal. For the experiments discussed here, 50 ppbv

O3 gave a signal that is equivalent to a HO2 concentration of 3× 106 cm−3. The sensitivity of the HO2 LIF detection is

water vapor dependent due to the quenching of the OH fluorescence by water. The change in the sensitivity is calculated from

quenching constants. Both corrections are taken into account. The accuracy of the LIF HO2 measurement is ±10 % from the

uncertainty of the calibration. The typical precision of measurements gives an limit of detection of 1× 107 mol cm−3 (2σ) for30

a 80 s measurement (Tan et al., 2017).
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2.4 SAPHIR

SAPHIR is an atmospheric simulation chamber at the Forschungszentrum Jülich. The chamber has been described in detail by

Rohrer et al. (2005). It consists of a double-wall FEP film of cylindrical shape (length 18 m, diameter 5 m, volume 270 m3).

It is equipped with a a shutter system that can be opened to expose the chamber air to natural sunlight. Synthetic air used in

the experiments is produced from liquid nitrogen and oxygen of highest purity (Linde, purity <99.9999 %). A combination of5

sensitive measurement instruments allows for studying chemical systems under well-defined, atmospheric conditions and trace

gas concentrations. SAPHIR has proven to be a valuable tool for inter-comparison of different measurement techniques (Fuchs

et al., 2012; Dorn et al., 2013; Fuchs et al., 2010; Apel et al., 2008), as it is ensured that all instruments can sample the same

air composition.

For this study, measurements were performed during a series of experiments in the SAPHIR chamber in May and June 2017.10

The focus of the experiments was to study the chemistry of two classes of oxidation products of isoprene: the isoprene hy-

droxyhydroperoxides (ISOPOOH) and the isoprene epoxydiols (IEPOX). In addition, reference experiments without addition

of VOCs, as well as experiments with isoprene were performed. These experiments were used to compare the performance of

the CIMS and the LIF instrument at atmospheric HO2 concentrations, testing various conditions, e.g. presence of ozone, NOx

species and different water concentrations.15

The CIMS was mounted at the bottom of the chamber, 4 m away from the LIF instrument. The ion flow tube setup shown in

Fig. 1 was directly connected to the chamber, so that the sampling nozzle was sticking into the chamber.

Data from the following instruments are used for the data evaluation and interpretation: The humidity was measured using

a Picarro cavity ring-down instrument (G2401 Analyzer). NO and NO2 were monitored by a Eco Physics chemiluminescence

instrument (TR780) and ozone was detected by an UV photometer (41M, Ansyco).20

3 Characterization of the HO2-CIMS

3.1 Calibration procedure

In general, the conversion of ion count rates measured by a CIMS instrument to concentrations of the detected molecule

requires regular calibrations of the sensitivity. For calibrating the HO2 sensitivity, we utilized a radical source as described in

Sect. 2.2. Figure 2 shows the measured, normalized ion count rates measured by the CIMS, when the calibration source was25

operated at a constant water vapor mixing ratio of 1.0 %. The HO2 concentration was varied by changing the UV radiation

intensity, which was achieved by varying the N2O concentration in the absorption cell. A linear behavior for the normalized

count rate is observed in a range of 3.0× 108 to 1.3× 109 HO2 molecules cm−3. The slope of the linear regression gives the

calibration factor of 6.8× 10−12 cm−3 ncps−1. The intercept of 5.1× 10−4 ncps of the linear fit indicates a HO2 background

signal. No background correction of the CIMS signal (see below) is applied here.30

Alternatively, the HO2 provided by the calibration source can be varied by changing the water mixing ratio at constant UV

intensity. The HO2 concentration provided by the calibration source is well characterized for different water mixing ratios. This

6
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Figure 2. Count rate of HO2 ·Br− ion cluster (m/z 112) normalized to the primary ion Br− (m/z 79) during sampling from the HO2

calibration source. The HO2 concentration provided by the source was varied by attenuating the radiation of the 185 nm radiation used to

photolyse water. The water vapor mixing ratio was kept constant. The error bars are smaller than the symbols in the figure.

allows the determination of the water dependency of the CIMS. The water dependent sensitivity is defined by Eq. 1, where c is

the sensitivity that depends term on the water concentration.

[HO2] = c(H2O)
m/z(112)
m/z(79)

(1)

Figure 3 shows the sensitivity determined for each water vapor mixing ratio showing a decreasing sensitivity with increasing

water vapor mixing ratio. The water dependent decrease in sensitivity is nearly linear for atmospheric relevant water mixing5

ratios higher than 0.1 %. Two effects contribute to the water dependence: The HO2 ion cluster is stabilized by water during the

attachment process, as water takes the access energy of the cluster rearrangement during substitution by the analyte molecule.

On the other hand, the HO2 bromide ion cluster is in a fast equilibrium with polar molecules in the gas phase. If atmospheric

water vapor concentrations are present in the ion flow tube, water may substitute HO2 in the ion cluster. The ion cluster

typically has a shell of water molecules at atmospheric conditions, caused by the ions polarity (Klee et al., 2014; Derpmann10

et al., 2012; Albrecht et al., 2014).

HO2 + Br− ·H2O 
 Br− ·HO2 + H2O (R2)

As indicated in R2, an excess of water can push the reaction equilibrium in the reverse direction. Thereby, the cluster

switching from HO2 ·Br− to H2O ·Br− causes a decrease in sensitivity.
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Figure 3. Measured HO2 sensitivity as a function of the water mixing ratio in two experiments. For the calibration, HO2 was produced by the

radical source while varying the water vapor concentration which causes a change in the HO2 radical concentration. During the ozonolysis

experiment, HO2 was produced from the ozonolysis of 2,3-dimethyl-2-butene, which is independent of the water vapor mixing ratio. The

red line shows a third order polynomial fit applied to the calibration data.

Further, the HO2 radical itself can form a water cluster (Aloisio and Francisco, 1998; Kanno et al., 2005; Stone and Rowley,

2005). This, for example, leads to an enhancement of the HO2 self reaction of up to a factor of two for atmospheric conditions

(Stone and Rowley, 2005). However, only a fraction of the HO2 (20 % at 297 K and 50 % humidity) is attached to a water

molecule at atmospheric conditions (Kanno et al., 2005). The concentration of HO2 water radical clusters is further reduced

because of the lower pressure in the ion flow tube along with a lower partial water pressure. Therefore, compared to dry5

conditions an roughly 10x increased sensitivity at humid conditions is likely mainly caused by the ion water cluster.

A direct calibration for dry conditions was not possible with the radical source, because the calibration source needs water

to generate HO2. The sensitivity of the instrument was also characterized by the production of HO2 from the ozonolysis of

2,3 dimethyl-2-butene, that was added in a concentration of 30 ppbv to a mix of synthetic air and 200 ppbv ozone. The radical

source was used as a flow-tube to overflow the inlet of the instrument with this gas mixture. 0.2 % CO was added to scavenge10

OH radicals produced from the ozonolysis reaction by a fast conversion of OH to HO2. The water mixing ratio was altered

during the ozonolysis experiment from 0.0 to 0.6 %. Assuming that the HO2 concentration from the ozonlysis is constant, the

relative change in the signal gives the relative change of the instrument sensitivity. In addition, calibration measurements using

the water photolysis were performed for water vapor mixing rations higher than 0.1 %, so that the water dependence of the

sensitivity determined by the two methods can be compared. As shown in Fig. 3, the instrument response is similar in both15

experiments. In addition, the instrument’s sensitivity at dry conditions could be tested showing that the instrument sensitivity
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drops by nearly an order of magnitude in the absence of water vapor. It is therefore beneficial to add water to the ion flow tube

to maintain an high instrument sensitivity at very dry conditions of the sampled air.

The water vapor dependence of the sensitivity can be parameterized by a third order polynomial (Eq. 2) for water vapor

mixing ratios higher than 0.15 %. This is typically sufficient for atmospheric conditions. At lower water vapor mixing ratios

as experienced in the chamber experiments the parameterization in Eq. 3 provides a good fit. S is the signal normalized by the5

primary ion, a, b, c, d are the fit parameters and H2O is the absolute water vapor mixing ratio.

S = a×H2O3 + b×H2O2 + c×H2O + d : H2O≥ 0.15% (2)

S = c×H2O−0.4 + b×H2O + a : H2O< 0.15% (3)

For the chamber experiments, the chamber air was humidified at the beginning of each experiments. At that time, no HO2

is expected to be present in the chamber. Therefore, the increase in the background signal that has the same water vapor10

dependence as the sensitivity (see next section) can be used to determine the relative change of the sensitivity on water vapor

on a daily basis. All HO2 data from the chamber experiments shown in Sect. 3.4 were evaluated by applying this procedure.

During the series of chamber experiments presented in Sect. 3.4, calibrations were done in-between the experiments. In the

middle of the series of experiments (6 June), settings of the instrument were tuned changing the sensitivity of the instrument.

In total 6 calibrations were performed.15

3.2 Precision of the HO2 measurement

The precision of the instrument can be demonstrated by the Allan deviation plot shown in Fig. 4. 10 hours of measurement

were used for this analysis while the instrument sampled from the calibration source that was operated at constant conditions.

As mentioned above only the signal at mass-to-charge ratio 112 is used for simplicity. The calibration source constantly

produced 2.5× 109 HO2 molecules cm−3. A minimum integration time of 4 s was used for the evaluation, resulting in an20

Allan deviation of 1.7× 108 HO2 molecules cm−3. With increasing integration time, the Allan deviation follows Gaussian

noise demonstrating the statistically nature of the instrument’s noise. An Allan deviation of 4.5× 107 HO2 molecules cm−3 is

achieved, if the measurement is averaged over 60 s. This is a sufficient detection limit for atmospheric measurements. Lower

detection limits can be achieved, if, for example, an integration time of 10 min is acceptable. In addition, the use of both

isotopic signals at mass-to-charge ratio 112 and 114 would lower the detection limit by a factor of
√

2.25

3.3 Instrumental background

The instrumental background was characterized in experiments where the inlet was overflown with humidified synthetic air.

This was done either using the radical source as a flow tube when the UV lamp was off or during experiments in SAPHIR,

when only humidified synthetic air was present in the chamber. As shown in Fig. 5, the background signal changes similarly
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Figure 4. Allan deviation plot derived from sampling a constant HO2 concentration of 2.5× 109 HO2 molecules cm−3 over 10 hours. The

Allan deviation demonstrates the precision of measurements depending on the integration time. The red line indicates the behavior of the

Allan deviation, if the noise is only limited by Gaussian noise.

with water vapor for both experimental conditions. The shape of the water vapor dependence is consistent with the assumption

that a constant HO2 concentration (1.5±0.2×108 molecules cm−3) is internally produced in the instrument, which is detected

according to the water vapor dependence of the instrument sensitivity discussed above. Therefore, the background can be be

subtracted from the measured HO2 concentration after applying the water vapor dependent calibration factor. The value of the

background needs to be regularly determined. For chamber experiments reported here, the background signal was measured in5

the clean dark chamber at the start of each experiment.

In turn, the change in the background signal with changing water vapor reflects the relative change in the instrument sensi-

tivity. This is especially relevant for the experiments in the SAPHIR chamber, because the chamber air was humidified starting

from dry synthetic air at the start of the experiments. Once the water addition was started the signal was rising steep and de-

creased slightly at higher water concentration, as shown in Fig. 5. No trend of the background signal over a period of 2 month10

was observed. The day-to-day variability of the background (in total 16 experiments) was within a range of ±12 % during

2 months of measurements at the chamber.

3.3.1 Potential interference from ozone

Ozone is known to be an interference in some HO2 LIF instruments due to the photolysis of O3 by the 308 nm excitation laser

(Holland et al., 2003). The potential ozone interference in the CIMS HO2 detection was investigated in laboratory experiments.15

Ozone was added to humidified synthetic air (water vapor mixing ratios 0.2 and 2.6 %). For both conditions no increase of the

background signal could be observed for ozone mixing ratios of up to 400 ppbv.
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Figure 5. The background HO2 measurement in the SAPHIR chamber derived during the humidification of the clean chamber and the

background measured during the laboratory calibration supplying humidified synthetic air. The red line shows a third order polynomial fit

representing Eg. 2, that can be used to corrected the instrument sensitivity at water mixing ratios higher than 0.15 %. For lower mixing ratios

the orange fit is used representing Eq. 3.

During experiments in the SAPHIR chamber, instrument background effects can only be determined for periods of the

experiments without the presence of reactants, when no HO2 was present. Typically, ozone was added in a concentration of

100 to 200 ppbv. Although no artefacts were found in the laboratory characterization, an increase in the background upon

ozone addition was observed in two of 12 experiments in SAPHIR. For both experiments, the chamber was first humidified

and ozone was added afterwards. This appears as an increased intercept of 2.3×108 and 1.0×108 HO2 molecules cm−3 in the5

linear regression between LIF and CIMS HO2 data for the experiments of 21 June and 26 June (Fig. 7), respectively. The data

of the LIF instrument were corrected for a maximum ozone interference of 0.05× 108 and 0.15× 108 HO2 molecules cm−3

on these days, respectively. This correction is much smaller than the HO2 concentration observed by the CIMS instrument, so

that it can be excluded that differences are due to systematic errors in the data of the LIF instrument.

In the correlation plot (Fig. 8), including all experiments, this additional background was subtracted. The increased back-10

ground due to the ozone addition has to be investigated in further chamber experiments. Because no direct connection between

the occurrence of this interference and chemical conditions in the experiments is observed, it might be related to instrumental

effects that could vary with time such as cleanness of the ion flow tube walls.
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Figure 6. Time series plot for the HO2 concentrations measured by the CIMS and the LIF instrument during the photo-oxidation experiment

at 19 June 2017 in the SAPHIR chamber. The gray shaded area indicates that the chamber roof was closed. The vertical lines are showing

the injection time of additional reactants, in case of water the injection took longer indicated by a broader line.

3.4 Comparison of CIMS and LIF HO2 measurements

A time series for a typical experiment is shown in Fig. 6. The HO2 production was initiated with the injection of ozone and

the opening of the chamber roof providing UV light to the chamber. An addition of CO further boosted the HO2 production,

which dropped upon closing of the roof. However, HO2 was still produced via radical chemistry in the dark. After the injection

of water the CIMS shows a stable signal with a small offset. During the experiment the LIF and CIMS data reveal a good5

correlation having similar errors. This experiment was performed without the addition of a volatile organic compound (VOC),

as well as, two other experiments marked with "None" in Fig. 7.

Figure 7 displays the correlation between HO2 measurements by the CIMS and the LIF instrument for all day-long photo-

oxidation experiment in the SAPHIR chamber performed in this study. The chemical composition was varied between exper-

iments by changing for example the NO mixing ratio. The different chemical conditions during the experiments allows for10

checking for potential interferences. High NO concentrations of up to 3 ppbv were reached by injecting NO to the chamber

air on 31.05 and 02.06, and up to 80 ppbv NO2 was added on 23.06. The NO2 interference test was performed injecting NO2

in the dark, dry chamber. No further photo-chemistry experiments was done on this particular day. No systematic change in

the relation between HO2 data from the two instruments is observed in these cases (Fig. 7). In general, no interference from

VOCs (Isoprene, ISOPOOH and reaction products) are observed, except for experiments with IEPOX injections. IEPOX was15

detected on m/z 197 as Br− · IEPOX ion cluster, but the instrument was not calibrated for IEPOX. Nevertheless, this mass

trace can be used to correct the HO2 measurement for the interference from IEPOX. The HO2 signal observed during the
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Figure 7. Correlation between HO2 measurements by the CIMS and LIF instruments for individual chamber experiments. Labels in the plots

indicate the specific VOC injected into the chamber.

injection of IEPOX can be attributed to the interference from IEPOX, because IEPOX was injected in the dark chamber so

that no HO2 is expected to be present. This gives the relationship between the signal observed at the IEPOX mass (m/z 197)

to the interference signal from IEPOX at the HO2 mass (m/z 112). During the photo-oxidation of IEPOX, when also HO2 is

present, the interference signal can be subtracted from the signal at the HO2 mass by scaling the initial interference signal by

the relative change on m/z 197. The correction improves the correlation of the CIMS and the LIF but the absolute agreement is5

still not as good (slope of the regression 0.86; coefficient of determination 0.79) compared to the other experiments. However,

a correction was performed for all experiments with IEPOX injection. The corrections are in the order of or smaller than the

HO2 measurements, and works best for the experiment with the lowest IEPOX concentration. It is worth noting that IEPOX

concentrations were at least 10 times higher than typically found in the atmosphere. Kaiser et al. (2016) found IEPOX con-

centrations of 1 ppbv during a campaign in a forest in the South-East US where isoprene, the precursor of IEPOX, was the10
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dominant organic species. Therefore no significant interference for atmospheric measurements by the CIMS instrument are

expected from IEPOX.

During experiments with ISOPOOH, HO2 measurements by the LIF instrument showed higher values than HO2 measured

by the CIMS instrument (slope of linear regression of 0.78; coefficient of correlation R2 = 0.68). Further experiments will be

needed to investigate if ISOPOOH could cause an interference in the LIF instrument. Like in the case of IEPOX, ISOPOOH5

concentrations were much higher (several ppbv) than typically found in the atmosphere (less than 1 ppbv Kaiser et al. (2016)),

so that no significant impact for atmospheric conditions is expected.

All concurrent measurements of the two instruments for HO2 by CIMS and LIF, in the photo-oxidation experiments are

summarized in the correlation plot shown in Fig. 8. In general, the correlation fit shows that there is an excellent agreement

of both instruments giving a slope of linear regression of 1.07 and the linear correlation coefficient R2 is 0.87. Experiments10

investigating the photo-oxidation of IEPOX and ISOPOOH are color-coded and are excluded from the correlation fit. However,

using all data for the correlation fit leads to similar result (slope of linear regression of 1.05; coefficient of correlation R2 =

0.89).

Correlation of individual experiments (Fig. 7, e.g. 21 June and 26 June) give partly significant offsets in the regression

analysis of up to 2.3× 108 cm−3 HO2. One possible reason could be the procedure, how the water vapor dependence of the15

instrument sensitivity was derived. This was done by using the relative change of the a presumably constant instrumental HO2

background during the humidification of the clean chamber air. The water vapor concentration was measured at a different

location in the chamber. Therefore, there is the potential that the water vapor concentration measurement in the chamber was

not representative for the water concentration in the ion flow tube of the instrument. In this case, the determination of the

relative change of the instrument’s sensitivity would fail and could results in an offset in the evaluation of data during the20

experiments. As seen in the experiment, shown in Fig. 6, there is a small offset that starts with the humidification. To avoid this

effect in the future, a humidity sensor will be implemented at the ion flow tube.

4 Conclusion and Outlook

Chemical ionization was applied to measure atmospheric HO2 concentrations using bromide ions as reagent. Laboratory

characterization experiments and measurements in the atmospheric simulation chamber SAPHIR in Jülich were used to check25

the instruments applicability for atmospheric measurements. The performance of the CIMS instrument is comparable with

measurements by a laser-induced fluorescence instrument. A water vapor dependence of the instrument sensitivity needs to

be taken into account in the evaluation of data because the sensitivity of the instrument changes by roughly a factor of 2 for

atmospheric water vapor concentrations between 0.2 and 1.4 %. Also a water vapor dependent background signal is observed.

The change of the background signal with increasing water vapor, however, is explained by the water vapor dependence of30

the sensitivity. Therefore, the assumption is that the background consists of constant HO2 production in the instrument. This

background was stable within±12 % during two months of measurements and no further trend was identified. The background

signal and the instrument sensitivity needs to be quantified on a daily basis. No significant interference from trace gases
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Figure 8. Correlation plot for the HO2 concentrations measured by the CIMS and the LIF instrument of all photo-oxidation experiments in

the SAPHIR chamber. A linear fit is applied to the subset of data excluding experiments with IEPOX and ISOPOOH.

NO, NO2, O3, CO, isoprene and ISOPOOH were found for atmospheric conditions. Only for non-atmospheric high IEPOX

concentrations of several ppbv artificial signals were found that scaled with the IEPOX concentration. The HO2 measurements

correlate well with the LIF measurements. A slope of the linear regression of 1.07 was determined and a linear correlation

coefficient (R2) of 0.87 was found. With a detection limit of 4.5× 107 molecules cm−3 for a 60 s measurement the instrument

is suitable to measure typical HO2 concentrations in the atmosphere.5

Further improvements of the instrument sensitivity might be expected, if wall contact of the sampled air including HO2 is

further minimized. This could be achieved by applying a sheath flow of pure nitrogen along the surface of the ion flow-tube.

Data availability. Data of the experiments in the SAPHIR chamber used in this work is available on the EUROCHAMP data homepage

(https://data.eurochamp.org/, last access: June 2018).
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Appendix A: Experimental parameters

day H2O O3 VOC VOC conc. NO NO2 CO

29 May 1.8 % 140 ppbv cis-IEPOX 3.2 ppbv 0.06 ppbv 1.2 ppbv 0.03 ppmv

31 May 1.6 % 50 ppbv isoprene 5 ppbv 3.0 ppbv 3.2 ppbv 0.05 ppmv

01 June 1.6 % 140 ppbv trans-IEPOX 1.7 ppbv 0.05 ppbv 1.0 ppbv 0.03 ppmv

02 June 1.7 % 30 ppbv cis-IEPOX 4.3 ppbv 3.0 ppbv 1.8 ppbv 0.06 ppmv

14 June 1.8 % 170 ppbv 1,2-ISOPOOH 2.4 ppbv 0.06 ppbv 1.3 ppbv 0.02 ppmv

15 June 2.1 % 190 ppbv 1,2-ISOPOOH 0.7 ppbv 0.04 ppbv 1.0 ppbv 0.03 ppmv

19 June 1.9 % 70 ppbv none 0.14 ppbv 2.1 ppbv 0.9 ppmv

20 June 1.9 % 160 ppbv 1,2-ISOPOOH 1.9 ppbv 0.04 ppbv 1.2 ppbv 0.04 ppmv

21 June 0.03 % 170 ppbv 1,2-ISOPOOH, 6.5 ppbv 0.01 ppbv 0.4 ppbv 0.15 ppmv

4,3-ISOPOOH 1 ppbv

22 June 2.0 % 170 ppbv 4,3-ISOPOOH 9 ppbv 0.04 ppbv 1.0 ppbv 0.1 ppmv

24 June 1.4 % 160 ppbv none 0.06 ppbv 0.8 ppbv 3.0 ppmv

26 June 1.6 % 170 ppbv none 0.05 ppbv 0.9 ppbv 0.02 ppmv

Table A1. The maximum concentration of reactants present in the reaction chamber during the experiments used for the correlation plots

show in 7. The VOC concentrations for ISOPOOH and IEPOX are preliminary data and are having an higher uncertainty.
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